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1. Introduction

This presentation on nonlinear optics does not aim to be complete and

detailed in the sense of recalling and accounting all experiments that were

performed in the area, and carefully presenting rigorous mathematical

details. Rather, it tries to present the essentials of the physics of

nonlinear optics in the simplest possible way and unify all the effects under

a common umbrella. What I hope to achieve is a simplified treatment of most

nonlinear optical effects to provide the inexperienced reader with a

springboard to jump into the sea of existing literature which is often

incommensurate with respect to notations and explanations.

Without further ado, let me briefly describe the contents of this

monograph. Section 2 describes the origins of nonlinearity, tracing it back

to its manifestation as the modification of the linear phase velocity of a

propagating wave. Relationships are established between the nonlinearity

parameters we choose to use for the simplest possible description, and

existing parameters (seemingly endless!) in literature. MKS units

have been used consistently. Throughout the monograph, z is assumed

to be the "nominal" direction of propagation and a "workhorse" dependent

variable W used to describe the physical effect.

Section 3 is dedicated to describing the effects of harmonic/subharmonic

generation. One-dimensional propagation is assumed for simplicity and the

parametric interaction process involved is described. An analysis is

advanced for harmonic/subharmonic generation in a quadratically nonlinear

medium without any "dc" polarization, both in the presence and absence of

dispersion. It is also shown that similar effects may be observed in media

with quadratic and cubic nonlinearities. The very recent observation of

harmonic generation in cubically nonlinear dispersive fibers has not been

treated since a consolidated theory for this is still in the developmental

stage.
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From Section 4, we concentrate solely on effects caused by the cubic

nonlinearity. In this section, for instance, we provide a simplified

analysis of self-refraction of beams which occurs due to an induced

refractive index profile due to the nature of the propagating beam. Not

mentioned in detail is the phenomenon of "self-attraction" between adjacent

beams, although a figure is devoted to illustrating the effect. More recent

topics such as self-bending of an asymmetric bearr in such a medium is left

out for the sake of simplicity.

Another very interesting nonlinear optical effect is bistability and

hyteresis, which is addressed in Section 5. To illustrate the basic

principles, a hybrid acoustooptic bistable device is first considered and

compared to the electronic Schmitt trigger to highlight the necessity of

nonlinearity and positive feedback in achieving bistable operation. The

nonlinear Fabri- Perot cavity is next analyzed using the so-called Maxwell-

Bloch equations as a starting point. The limiting cases of purely absorptive

and purely dispersive bistabilities are discussed in some detail. In the

latter case, the onset of instability is addressed by considering familiar

feedback criteria. Lastly, transmission through a linear/nonlinear interface

is analyzed and bistable and hysteretic phenomena predicted. Bistable optical

elements can be used as the basic building blocks of an optical computer.

The presence of a cubic nonlinearity can be sometimes exploited to

achieve real-time holography or phase conjugation. This is discussed in

Section 6. Principles of holography are recalled, and a semiclassical

treatment of phase conjugation (also called four-wave mixing) advanced under

the simplifying assumption of strong "pumps."

Finally, in Section 7, the role of a cubic nonlinearity in balancing

dispersion in fibers to ensure distortionless pulse propagation is analyzed

through the nonlinear Schrodinger equation, which is first heuristically

derived. The distortionless pulses arising out of a balance between
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nonlinearity and dispersion are commonly called solitons, and show promise

of future use in fiber-optic communication systems.

While much of the discussion has been borrowed and "rebottled" in an

unified way, some of the effects repcrted are new and the analysis novel.

Refe.rence may be made to the idea of second harmonic generation in the

presence of quadratic and cubic nonlinearities, the comparison of the

acoustooptic bistable device with an electronic Schmitt trigger, the

treatment of purely dispersive bistability in a Fabri-Perot cavity, and the

prediction of hysteresis and bistability during transmission through a linear

nonlinear dispersive interface.

2. Origins of Nonlinearity

In an optically nonlinear medium, the nonlinearity can be attributed to

the dependence of the phase velocity on the amplitude of the propagating

wave, unlike the linear case which always assumes infinitesimal wave

amplitudes. Thus, while a PDE for a wavefunction xV of the form

al/at + ca laz - 0 (1)

where t denotes time can explain unidirectional propagation along z in a

nondispersive linear medium, the phase velocity c needs to be modified to c0 p

according to

-2
c cp C 0 2 + 2+ 3 2+'') (2)

to account for nonlinear propagation [1]. In (2), 02 and 03 are referred to

as the quadratic and cubic nonlinearity coefficients respectively for reasons

that will shortly become clear. The wavefunction, W may represent a

component of the (real) electric field.
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In the nonlinear regime, eq. (1) is modified, in the light of (2), to

aw/at + Co (1 + A 2V + 3 #2 )alv/az - 0 (3a)

or

AI/at + Co0/az + (c o 2 /2)aV 2/az + (c o 3/3)a3 az = 0, (3b)

justifying the names given to P32 and 533 above. We remark that the

nonlinearity, e.g., 02' is responsible for shock formation during fluid flow

due to steepening of the (baseband) wavefronts as shown in fig. 1. This

happens since the parts of the baseband pulse having larger amplitudes travel

faster than the parts with smaller amplitudes for P2>0, leading to a point in

time where the right edge of the pulse develops infinite steepness or

'shock.' In optics, the quadratic nonlinearity (and cubic nonlinearity, too!)

is responsible for second harmonic/subharmonic generation, and this will be

discussed in Section 3. Special effects arising from the cubic nonlinearity

will be mentioned below and discussed at length in sections 4 - 7.

The reader may realize that the simpls model described above cannot

describe wave propagation in higher dimensions, necessitating the need for a

higher order PDE. This can be readily derived from (3) by differentiating

w.r.t. t and reusing (3) to simplify. This yields, after some algebra,

a 2V/at2 2a2/z2 z 2c 2 [( /2) a2 2/az2 + ( 3 /3)a2 13/az2 (4a)

Z 2 a2 2 /at 2 + (2P3 /3) 2W3/at2 (4b)

under the assumption of weak nonlinearity [2]. This assumption helps us

neglect second-order terms in 2,3 in deriving (4a), and in approximating

neglectll 3e o d- r e tem s n 02'm , 3
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'p '. . • | M I I

Z--'O Z --z I> 0 Z=ZZ >Z I

Fig. 1. Evolution of shock during pr Dagation of a baseband pulse.
The nonlinearity parameter -2 is assumed to be positive.

T = t-z/c is a moving frame of reference.0
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a 2/ z2 by c 0 2/at2 on the RHS of (4a) in deriving (4b). The extension to0
22

higher mensions may be effectively done by replacing a 2/az in (4b) by the

Laplacian 
V2

2 2 -co 2 W z a2 \2 /at2 + 2 (5)

As will become clear later in this section, eq. (5) with 02,3 t 0 becomes the

wave equation for a component of the E field where the RHS may be identified

to be the source term. due to the nonlinear polarization of the medium. While

the quadratically nonlinear induced polarization is responsible for second

harmonic/subharmonic generation as stated earlier, the cubically nonlinear

induced polarization gives rise to an amplitude- dependent refractive index

which causes self-refraction, and can account for other nonlinear optical

effects such as bistability, phase-conjugation, soliton propagation etc.,

to be discussed later.

At this point, it is instructive to strike a connection between the

nonlinearity parameters P2, 2 3 introduced above and the commonly occurring

parameters in nonlinear optics literature. There, the description of

nonlinearities is given in terms of the nonlinear induced polarization

in the medium or an amplitude dependent refractive index. In the former,

the induced polarization P. is expressed in terms of a Taylor series

expansion of the electric field component E. according to (3]

Pi E EoxjEj + EE EE E o u k + k x ijklEjg k (6a)

SoijEj + 2dijkE jE k + eoxijk lEjE kEl (6B)

NLo iEj +2.' (6c)
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where the Einstein convention for summation over repeated indices has been

employed. in (6), Xij is the linear susceptibility, while Xijk and Xijkl

refer to the second and third-order nonlinear optical susceptibilities

respectively. The reader, not quite familiar with tensor notation, has

scope for being baffled for sometime at first, but may take heart from the

fact that (6) is merely a shorthand for writing lengthy expressions. For

example, without the last two terms of the RHS of (6), PI' the x-component

of the polarization may be expressed as

P1 = Co(XllE 1 + X1 2E2 + X1 3E) (7)

where E1 1E2 ,E3 stand for the x,y and z components of the electric field in a

medium where, in general, X11 * X12 # X1 3' if the medium is anistropic.

Readers may be reassured that the new representation is not usually

necessary to explain the nonlinear effects mentioned earlier, but should be

familiar with it in case of cross-referencing with existing literature.

The wave equation for the vector electric field E may be readily

derived from Maxwell's equations by writing

D-E + P (8)
0

where the components of P are specified in (6). This yields

a2-/at2 - c 2,V - - (go/E)a2-NL at2 (9)

in a region free of sources and currents and for a medium which is isotropic

in the linear regime (Xi j - XL). In (9),

S-E 0o(I + XL) (10a)
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and

1/2
co - (1/40e) (10b)

It is true that through eq. (9), one can obtain a set of coupled PDEs,

in general, that describes the behavior of a certain component of the

electric field. However, as will be shown later, similar equations may also

be derived by starting from (5) and assuming no particular anisotropicity in

the medium. To explain the physics of what is happening, we shall therefore

use eqns. (3) or (5) as our starting point.

To obtain typical values for P2, for instance, note that a comparison

of (4b) and (9), with (6), shows that 02 is of the order of -2(g./E)dijk =

-2go o (1 + XL)dijk. Listed below are some typical values for d'..jk along

with the corresponding wavelengths at which they are measured (33:

2. -223 2
crystal i.M) d ( x10 m3/V-s2

__________ _ ___ ___ ___ ___ ijk 9

GaAs 10.6 d12 3 : 107

InSb 28 d1 2 3 : 462

CdTe 28 d12 3 : 48

CdS 10.6 d3 3 3 : 35

d31 : - 21

1.06 d3 3 3 : 80

LiNbO3  1.06 d : - 27
3 333

d222 4

quartz 1.064 dll : 0.4

KDP 0.6328 d213 : 0.57

1.06 d312 0.50

Table 1. Quadratic nonlinearity coefficients dijk for some crystals.
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We caution readers that the values of dij k in Table 1 are only valid

for the case of second harmonic generation. For the general three-frequency

interaction case (03 - i+W2 ), the values of dij k may be different than

those listed.

Now to prescribe typical values for 03' the cubic nonlinearity

coefficient, we will first state its relationship with the amplitude-

dependent refractive index coefficient n2 defined as (3]

n = n + (1/2)n 2 ee (11)
o

where We represents the envelope of W: XV = Re {'4e exp j(w t-k z)}, and where

n denotes the linear refractive index. This can be readily achieved by0

starting from (2) with 02 = 0 and invoking the weak nonlinearity assumption.

The result is

53 = -2n2 /n 0 ' (12)

The units of n2 and P3 are m
2 /v2 in MKS since y e has units of V/m. We

specifically point thi3 out for the benefit of readers who, like us, will

no doubt be frustrated at different unit systems that are used in

literature, as well as different definitions of the nonlinear polarization

and the nonlinear refractive index coefficient. For instance, an equivalent

representation of the nonlinear refractive index that appears in literature

is [4]

n = n +yI, (13)

where I is the optical intensity or irradiance. y has the unit of m 2/W and is

related to n2 as
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y = n2/ce on0  (14)

Finally, n2 is related to a nonlinear susceptibility viz. 1 as

n 2 - 3%lll /nor (15)

for the case of an electric field linearly polarized in, say, the x-

direction. Eq. (15) may be derived by writing E and PNL in (9) in terms oz

NL NL 2*
their slowly varying envelopes Ee and Pe , setting P = 3eoXlll E e E e (see

(6b)) and finding the effective propagation constant. The factor 3 above is

a degeneracy factor which arises in the interaction process (0) = 0) +(0 -

Values of X1111 for different materials are listed in Table 2 (5].

X41 -21m/2

Material Xq m) 1 4, 2
no nX 1 1 1 1 (- x 10 M /V

GaAs 10.6 3.3 120

InSb 5.3 4 -6x10 1 0

10.6 4 2x10 6

CdTe 1.06 3 2.5x105

CdS 0.694 2.42 130

3
Ge 10.6 4 10

Si 10.6 3.4 60

H2 0 0.694 1.33 0.7

Acetone 0.694 1.35 1.8

Penzene 1.064 1.5 2.4

Table 2. Cubic nonlinearity coefficients X for some materials.



3. Harmonic/Subharmonic Generation

An important consequence of nonlinearity is frequency multiplication.

To see what this means consider, fLrst, one dimensional CW propagation in a

quadratically nonlinear (P32 # 0, 0 3 = 0) nondispersive medium. If a CW wave

of angular frequency 0) and propagatio.: constant k is incident on such a

medium, it can generate harmonics that travel along with the same velocity.

The energy and momentum conservation law3 as well as the dispersion

relationship (variation of (0 with k) have to be satisfied whenever wave

interactions occur [6). Limiting ourselves to only two frequencies, namely

the fundamental (0o k ) and the second harm nic (2o , 2ko ), the following

interaction occurs:

S+ o 2D ; 2o o) -4 (o
o o 0 0 0 0

(16)

k + k - 2k ; 2k -k - ko 0 0 0 0 0

with w /ko = co the phase velocity of the two propaga:ing frequencies. The

relation (15) depicts explicitly, for example, the paranetric mixing of two

waves at (0) ,k ) through a quadratic nonlinearity to yiell a third wave at

(20 , 2ko ). This is the basis of second harmonic generation usually observed

in nonlinear electrooptic crystals [31, (4], [7].

The next question to ask is: Could a cubic nonlinearity also play a

role in second harmonic generation? At first thought, this seems doubtful,

since a cubic nonlinearity can only facilitate interactions of tne type C0 +0

o + o -4 3a leading to third harmonic generation. A closer examination has

revealed, however, that the answer is yes, but only if either the quadratic

nonlinearity is also present, or if a "dc" source of energy is either

externally applied or internally generated [8]. The latter case is in

support of recent observations of second harmonic generation in optical
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fibers which can only have odd-order nonlineazities. We will not treat this

case since, at this time, no undisputed exp'anation is available. In the

former case, the parametric mixing that occurs can be represented as:

2wo + ( o - o - 2o, 2ao - 2(o + 2'j -4 2wo

o + 2o - 2 -4 o) (o ) - ( o + u) 4 w o , (17)

with similar relations for the k'. The parametric process described above

may be visualized as contributic s to the growth of the second harmonic

amplitude in the presence of tls fundamental (and vice-versa).

If, now, the medium under consideration is dispersive, the propagation

constants for the frequencies w and 2w are no longer related by a simple0 0

factor (viz., k2 = k(2 0) = 2k 1 k(w )). For one-dimensional propagation,

this gives rise to a spatial beating for the fundamental and harmonic

(subharmonic) amplitudes, which in the general theory of nonlinear waves, is

called the "Fermi-Past -Ulam"l recurrence phenomenon [9]. The recurrence

period, which in the iinear case for two propagating frequencies is given by

21/(k 2 - 2k1), is morified by the presence of nonlinearities, to be explained

in detail below.

In many physical situations, however, wave propagation is essentially

higher-dimensional unless special care is taken to ensure one-dimensional

propagation. For the higher-dimensional dispersive case, the two

frequencies are no longer constrained to propagate in the same direction,

and hence interact according to the "resonant-triad" relations (6]

1+ 0 24#0)3

k + k2 - k3 (18a)

n1 2n 3II
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with

I= (tkH [)l(18b)
(18b

The resonance triad vector diagram is shown in fig. 2 for the case U), = 2 =

(o0 and (03 = 2o . Since the waves are "free" to travel in higher dimensions

(predictable from the vector diagram and the dispersion relationship), there

is no longer any spatial beating due to dispersion, and the evolution of the

second harmonic/subharmonic is similar to the nondispersive case, albeit in

their respective directions (6], (10], (11 . The rigorous mathematical

formulation of this case is beyond the scope of this discussion.

3.1 Mathematical Formulation for One-dimensional Propagation

We first assume W(z,t) to be representable as

W(z,t) = 1 ) 7 (z)exp [jn(oo t - k z)] (19)
2 - n0 0

with IF = 0 (no dc component); and with W = T to ensure that the
0 -n n

wavefunction is real. Then substituting (19) into (3) and gathering terms

around the respective frequency components, viz., 0 and 2(0 , we obtain0 0'

the following set of coupled spectral evolution equations [8):

2
d'P/dz - (Jko/2) _ IFn.-2M m n-m

2 2
+ (jk 3 /4) m-- - T'em-..-m" (20)

In deriving (20), we have assumed o /ko c and that %F (z) is a slowly
0 0 0 n
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Ik, =Ik2 21T, 1
W I=(U2 = 

1 W 3 /2

Fig. 2. Resonant triad wavevector diagram for three interacting waves
1, 2 and 3, two of which have the same temporal frequency. The
wavevector diagram follows from the conservation of momentum
during wave interactions and the dispersion characteristics of
the system. The interaction angle 9depends on the amount of
dispersion.
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varying function of z in the sense that IFd /dzl << I nk T I. Note that the
n o n

first and second terms on the RHS of (20) respectively denote the

contributions from the quadratic and cubic nonlinearities.

To account for the effect of dispersion, we must slightly modify (20).

To do this, we may realize that in the presence of dispersion alone, the

propagation constant for the 'n'-th har monic can be written as k n Thus,n

during propagation, the spatial behavior of IF will be [12]
n

F= I (0) exp[-j(k -nk )z], (21)
n n n 0

so that in (19),

2
'F(z,t) = (1/2) IF (0)exp[j(no t-k z)], (22)

n4 n 0 n

as expected. Now (21) is analogous to

dP /dz = -j(k -nk )T . (23)
n n o n

To incorporate the effect of dispersion in our nonlinear system (20), we may

heuristically add a term as on the RHS of (23) to the RHS of (20) if the

nonlinear and dispersive effects are small:

2
d'P /dz - (jk o2/2) m IFnm 0- 2 m n-m

n 0 m=-2 n

2 2
+(Jk03 )m-2 -2 m -m

-J(k -nk) n" (24)
n oIn
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Eq. (24) will serve as our model equation describing the evolution of the

fundamental and the second harmonic in a medium with quadratic and cubic

nonlinearities, and dispersion. In what follows, we will consider two

special cases: (a) harmonic generation with quadratic nonlinearity without

and with dispersion, and (b) harmonic generation with quadratic and cubic

nonlinearities and no dispersion. Comments on subharmonic generation will

also be made.

3.2 Harmonic Generation with Quadratic Nonlinearity

In this case, with 52 # 0, f33 = 0, eq. (24) gives the following set of

equations for n - 1 and 2:

di/dz = j(ko/2)'_lT - j(k -k )Tl, (25a)

dj/dz - ko/2) 2 _ J(k-2k ) ', (25b)
2 j(2 1 2- 0 2

where i' ,2 denote the complex spectral amplitudes at c and 2w . Note
2o o

that we have retained the symbols k and k2 to stand for the propagation

constants at the frequencies 0 and 2( respectively at this point. In0 0

principle, k1 could be set equal to k without loss of generality; however,0

we choose to retain the distinction to bring out the effect of dispersion

more succinctly. We will now resolve the complex spectral amplitudes into

their respective (real) amplitudes and phase by writing

IF - a exp(-j*n] - IF (26)
n n n -n

in (25). This yields the following set of four equations:
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da 1 /dz -(P 2k /2)a 1 a 2 sin(O2 -20 1 ), (27a)

da /cz - -(02k /2)a 2 sin (02-2 , (27b)
2 "2 o 1 2 (~21)

dol/dz = -(P2k /2)a cos(6,-2 I) + (k -ko), (28a)
o 2 - 1 0o

do 2 /dz 2 -(P2o k 0 (a2/a2) cOs(O2-2 1) + (k 2-2k ) (28b)

Now, (28a,b) can be combined by defining

0 = 02-2l (29)

to give

dO/dz - Ak + (P 2ko/2)(2a2-al/a2)Cos ,(30)

where

Ak __= k -2k (31)
2 1

is proportional to what is often called the "phase velocity mismatch" due to

dispersion. Remark that from (27a,b), it readily follows that

2 2 2 2

a + a2 - constant - a (0) + a 2(0) = -, (32)
1 2 1 2

depicting conservation of energy. Finally, normalization using the

definitions
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- ( 2ko12) i / 2 z

AS - 2Ak/ (-ki/2 (33)

u - al/El/2,

-1/2v - a 2/E

reduces the system (27), (32) to

du/d4 - uv sin 6, (34a)

2
dv/d9 - -u sin 0, (34b)

dO/d4 - As + (2v-u 2/v) sin 8, (35)

where we have used the definition of 0 as in (29). Observe, also, that

using (34a,b),

d[tn(u 2v)]/dt - (2/u)du/d4 + (1/v)dv/dt

(2v-u 2/v)sin 0; (36)

hence, (35) may be recast in the form

dO/ - As + cot 0 d(tn(u 2v)/d4. (37)

Eqs. (34), (37) therefore describe the evolution of the real amplitudes and
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the relative phase difference during propagation in a quadratically

nonlinear dispersive medium (7), [13].

Consider, first, the case when As - 0 (perfect phase-matching). Then, from

(37), one integration yields

2 A 2
u v co e = constant = F = u (0)v(0)cos8(0). (38)

Now, using (34b), (38) and realizing that

2 2
u + v = , (39)

we can write

d(v 2)/dt = 2v(l-v 2) l - F 2/v2 (1-v2)2/2

or

v2 ( 2 2) 2 -1/2 2(0

+(1/2) 2 [v2 (1-v 2 ) - 1/2 d(v2 (40)
v 2(0)

The general solution to v(4) (and hence to u(4) and 0(4)), as given by

(40), is rather complicated if v(0) * 0. Suffice here to state that the

solution depends on the roots of the equation

2 -v2 - 0 (41)

2 2 2
which may, for now, be written as va, vb and v c, with

2 2 2
Vc >vb >v (42)

The solution is expressible in terms of Jacobian elliptic functions like
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'cn' and 'sn' which look similar to the 'cos' and 'sin' functions, and are

periodic in nature, with a period given as (14]

2
fv" b [v 2 (1-v 2 )2 - r21 -1/ 2 d(v 2. (43)

a

A case of physical inteLest is where v(0) - 0 (u(0) * 0), i.e., when we

want to generate the second harmonic starting from the fundamental. Then r -

0 frm 38) ri 2 
= 2 20 (from (38)) and v a = 0, vb v c = 1 (from 42)). The period % (using (43))

becomes infinity. (40) may be readily integrated to give

v(4) = tanh 4 (44)

so that from (39), a possible solution to u is

u(t) = sech t. (45)

Now, (44), (45) suggest that at = 0, 0(0) - -7/2 (using (34)) = 0(t) (using

(35)) since As - 0 (perfect phase matching). A plot of u and v is shown in

fig. 3a. Note that the fundamental amplitude asymptotically goes to zero;

while the second harmonic amplitude asymptotically tends to 1, although in a

physical system with attenuation, the second harmonic amplitude eventually

decays to zero.

We remark, in passing, that eqs. (34), (35) may also be used to explain

subharmonic generation. For this, we have to take v(0) * 0, and assume a

small amount of the subharmonic (u) exists in the system due to ambient

noise. If we assume this initial amount of the subharmonic (-ev(0)), it is

easy to check that for 0(0) - 7c/2, the solution to (34) may be expressed as

u(t) - sech (4 - k) , (46a)
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(a)
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Fig. 3. Theoretically predicted variation of (a) fundamental - and
second harmonic -.-.- amplitudes and (b) fundamental - and

subharmonic --- amplitudes due to quadratic nonlinearity and
in the case of perfect phase matching. While the second
harmonic grows from zero, the subharmonic is amplified from
noise level.
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v(4) - -tanh (4 - (46b)

with

to tanh-i v(0) - (i/v() n(i/) (47)

and where

v2 ( 0 (+2 = I, (48)
v (0) (l+e (8

to ensure conservation of energy. A plot of u and v for this case is shown

in fig. 3b.

Consider, next, the case when As # 0 (imperfect phase-matching). In

2
this case, multiplying (35) with u v sin 0 and using (34), we get [7], (13]

(d/d) [u 2v cos 0] + (As/2) d(v 2)/d4 = 0. (49)

Integration gives

2 2 Au v cos 0 + (As/2)v = constant rAs

- f + (As/2)v 2(0). (50)

Eq. (40) is now generalized as

+ 1 J2 1 2 [v2 (-v 2  
- { - (As/2)(v 2-v 2(0))l} 2] /2d(v 2.

v (0)
(51)

Everything previously said about (40) and its solutions for v(0) * 0 carries
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over to the solution of (51), and the period in this case is given by

2
- b [v2(1-v2 2 {r - (A-s/2) (v -v 2(O))} 2I / 2 d(v ), (52)

v

a

h 2 2 2 2 2 2
where V c, Vb, V (with v 2> v 2 > v ) denotes tne roots of the quantity in

square brackets in the above expression.

As before, a case of physical interest is where v(O) = 0 (u(0)O). We

will find the period of oscillation for this case. To do this, we recast

(52) into the form

f /22 .2 -1/2

i= (2/v) f d [l-(v. /v ) sin 2] (53)c 0 n c

by employing the substitution

sin2 = (v2-v 2)/ (v 2_v2 (54)
a b a

and noting that for v(0) -0, r - 0 and v = 0. The other two roots area

given by the solution to the algebraic equation

2 2 2 2 2v (1-v2) - [(As/2)v2} = 0 (55)

as

2 2 1/22 2
v - [As/4) + {l+(As/4) } I i/vb. (56)

For the severely mismatched case (As>>l), it can be shown, after simple

algebra, that
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v2 =(2/A3) 2 [18 A)2 (57a)

2 2 - 22 (A3/2) 2 [l+2/[As2] (57b)
C

so that (53) straightforwardly yields (using (8.57))

- (2/ts) (I-4/(As)2). (58)

(The period in z may be readily found using the transformations in

(33)]. The growth of the second harmonic amplitude for different values

of phase mismatch is shown in fig. 4. In the theory of nonlinear waves,

this periodic behavior is referred to as the Fermi-Pasta-Ulam (FPU)

recurrence (9].

3.3 Harmonic Generation with Quadratic and Cubic Nonlinearities

We will discuss, in this section, the problem of harmonic generation

with quadratic and cubic nonlinearities, and no dispersion. The case with

dispersion follows in a similar way, and will not be discussed here, since

our intention is to simply point out the criteria that dictate harmonic

generation in a quadratically and cubically nonlinear environment.

For the analysis, we return to eq.(24), and neglect dispersion to write

down the following set of equations for the spectral amplitudes Ti and T.
1 2

[8]:

d /dZ - o P/2) -IT2 + j(ko0 /4)(I-14 + 2 1' 2T 2) (59a)

d /d - J(k o2)11 + j(ko/2) (q 2? + '1.) (59b)
2 o 2 1 o03 2 -2 1- 2

Now, using the same procedures as that followed in Section 3.2, we can
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increasing t s

C/ NI

Fig. 4. Growth of the second harmonic amplitude with propagation in the

phase-mismatched case. For comparison, the phase-matched case
is included in the figure. The approximate expression for the
period is given in eq. (58).
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derive the coupled equations between the (normalized) real amplitudes and

the relative phase difference. Relations to use are (26), (29), (32) and

(33) without the phase mismatch term As, and the definition

S(P3 /202 ) -1/2. (60)

The quantity 0 may be thought of as a parameter describing the ratio of the

cubic and quadratic nonlinearity coefficients. The set of coupled equations

for this case eventually becomes

du/d4 - uv sin 8, (61a)

dv/d4 - -u sin 0 (61b)

and

d8/d - 2Q(v 2-u 2 ) + (2v-u 2/v)cos 0. (62)

As expected, eqs. (61), (62) for 0 = 0 (no cubic nonlinearity) become

identical to eqs. (34), (35) for As - 0 (no dispersion).

To solve the above system, we proceed analogous to the method in

2
section (3.2) for As # 0. For instance, multiplying (62) by u v sin 0

and using (61) to simplify, we get, after some algebra,

2 -u22 A2 -2 2u v cos 0 - Qu v constant A r - u (0)v(0) cos 8(0) + Qu (0)v (0).

(63)

Finally, using (61b), (39) and (63), and integrating, we obtain
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= ±(1/2) 2 v 2 -v2 2 {r -Q(1-v 2 )v d(v ). (64)
v (0) 0

The quantity in square brackets, unlike the similar expressions in (40) and

2.
(51) have four roots since it is a quartic polynomial in v . 3owever, it is

possible to reduce (64) to a problem where the denominator is a cubic

polynomial, through a simple change of variable, but that is out of the scope

of this discussion. Suffice to say that once this is achieved, everything

previously said about (40) and its solutions may apply. In what follows, we

will consider the case of physical interest where v(O) = 0 (u(O)#O); i.e.,

when we want to generate the second harmonic starting from the fundamental.

Then F0 = 0 and (64, becomes

2
- ' v (1v)(/ -)/2 v)

±(l/2Q) v 2 ( 2-v2)  (/2-v 2 ) -1/2 d v2 ) . (65)
0

For Q2 > 1, direct integration, after some algebra, gives

v 2() - 1/[Q2 + (Q 2-1)cot2 {(Q-)1/2}]. (66)

The fundamental and second harmonic amplitudes vary periodically with

, with the period given by

- 1/2 (67)

This indicates recurrent behavior, similar to the case of harmonic

generation with quadratic nonlinearity and in the presence of dispersion.

All nonlinear materials have quadratic as well as cubic nonlinearities, and

the simple analysis above tells us that periodic exchange of energy will

occur if the condition
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0 3 /20 2u(0) > 1 (68)

is satisfied. The variation of the fundamental and second harmonic

amplitudes for this case is shown in fig. 5.

On the contrary, for 62 < 1, direct integration of (65) gives

v2 () = [(2 + (lQ2)coth2 {(,-a2)1/2 } . (69)

This suggests an asymptotic increase in the second harmonic amplitude with

graduate decay of the fundamental as shown in fig. 6, and is similar to the

case of harmonic generation in the presence of quadratic nonlinearity and no

dispersion.

4. Self-refraction

As one of the first effects of a cubic nonlinearity on wave propagation,

we will first consider self-refraction of a beam. To get a physical picture,

consider a beam with a Gaussian-like profile as shown in fig. 7. If the

medium is cubically nonlinear, we can describe the nonlinearity in terms of

n2 , the nonlinear coefficient of the refractive index, which is related to 53

as given in (12). If n2 is greater than zero, regions along propagation with

greater amplitude will possess a greater refractive index than a region with

lower amplitudes. The result is a refractive index profile much like graded

index optical fibers. If we trace 'rays', these would therefore appear to

bend towards the axis of propagation, indicating a reduction of the beam

waist size, and hence an increase in the on-axis amplitude. This simple

picture would however suggest that the on-axis amplitude should tend to

infinity; however this does not occur since diffraction puts a limit to the

minimum waist size. This is shown in fig. 7. Heuristically speaking, this

makes sense since the amount of diffraction (as predictable from the angle of
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Fig. 5. Variation of the fundamental and the second harmonic with

propagation in the presence of quadratic and cubic nonlinearities
and no dispersion. The parameter Q = 3.5.
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Fig. 6. Variation of the fundamental and the second harmonic with
propagation in a medium with quadratic and cubic nonlinearities
and no dispersion. The parameter Q < 1.
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pr opoation
direction

(a)

propagation
direction

(b)

Fig. 7. Self-focusing of a beam in a medium with a negative cubic
nonlinearity( 3 < 0). (a) ray trajectory: rays tend to converge
toward the direction of maximum refractive index; (b) periodic
focusing. This occurs since the beam waist can decrease only
till the point nonlinear effects dominate over diffraction.
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diffraction) depends on the ratio of the wavelength to the waist size. For

an arbitrary initial beam profile, therefore, we would expect initial

reduction of beam waist size before diffraction effects start to dominate and

spread the beam again, resulting in periodic focussing. It turns out that

while this is mostly true for a beam in a two-dimensional geometry, it may

not be true for the three-dimensional case. It is also possible to find the

right beam profile for which the beam-narrowing effect of nonlinearity

exactly balances the beam-spreading effect of diffraction (4), (151, (16),

(17); this will be derived shortly.

For the opposite kind of nonlinearity, it is easy to argue that the

beam will spread more than it does for the linear diffraction-limited case

(see fig. 8).

In what follows, we will first derive an evolution equation for an

arbitrary beam profile in a cubically nonlinear medium and derive an

analytic expression for the diffraction-free beam in the medium. We write

as

W = (1/2)1e(x,y,z) exp j(O0t-koz) + c.c. (70)

and substitute in (5) with 32 - 0 to get, after some algebra,

2jkod1 /dz - e- ( 3 k 2 /2) 24 '  (71)

where we have only retained contributions around (0 ,k) . Furthermore, we

have assumed o/k0 - c and assumed We to be a slowly varying function of z

in the sense that

Id 2Ve/dz21 << k dV e/dzl. (72)

-- - ,mnnu ont f i ei l~l
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Ppopgation
direction

Fig. 8. Self-defocusing of a beam in a medium with a negative cubic
nonlinearity. The beam spreads more than the linear

diffraction-limited case.
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In (71), 2 denotes the transverse Laplacian a2/ax2 + a 2/ay (71) with f3
t 3

0 is identical to a PDE for we which can be readily solved using Fourier

transform techniques (18] to yield the Fresnel diffraction formula [4], [19].

Thus, in (71), the first term on the RHS is due to diffraction, while the

second term represents the nonlinear contribution. Eq. (71) has the same

form as the nonlinear Schrodinger equation (2], (4], [17], (20], which is

used to explain soliton propagation through fibers (21].

In our quest for the expression of J1 I that does not depend on z, we

may substitute

V1e(x,y,z) - a(x,y) exp (-jKz) (73)

in (71) to get

V a - -2Kkoa + (P 3k
2 /2)a 3 . (74)

Consider, first, the case where we have one transverse direction, viz.,

x. Then it may be readily verified that a particular solution to (74) may

be expressed in the form (22]

a(x) - A sech Kx (75)

where

A - (8/ 33ko ) 1/2 (76a)

1/2K - 1/(-2Kk 0 (76b)

We note that, from above, K < 0 and 03 < 0 for a physical solution. Now 03
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< 0 implies n2 > 0 (see (12)), which is in agreement with our heuristic

description for self-focusing. A plot of the envelope is shown in fig. 9.

For two transverse directions, viz., x and y, we will only consider the

case where we have radial symmetry, and express the transverse Laplacian in

polar coordinates:

2 2 2 2 2 2
al2ax + a lay = ap2 + (1/p)a/ap. (77)

Using the definitions

a = (2K/I33k )i /2

p - (-1/2k ) 1/2, (78)

eq. (74) may be recast in the form

2 v/ p2 + (i/p)a/ap - a + 3 = 0. (79)

This equation has no analytic solutions; the solutions are thus obtained by

numerical methods [22, [15), [162 and are shown in fig. 10. These are

"multimodal" in nature, the mode number depending on the initial condition

1(0).

An approximate solution for an arbitrary initial beam profile can be

found by starting from (71), writing down the "eikonal equations" during

propagation by resolving Ye into its amplitude and phase, and assuming

power series solutions for these quantities (23]. The calculations confirm

periodic behavior if we consider one transverse dimension; but are outside

the scope of our discussion. We end this section by showing pictures of this

periodic behavior for an initial Gaussian profile (fig. lla) that was
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V

(a)

(b)

Fig. 9. Propagation of astationary beam (a) having the form as given
by eqs.(75), (76). Fig. (b) was generated by means of a
split-step algorithm in which diffraction was accounted for
in the spatial frequency domain and nonlinearity in the
space domain. The stationary beam is a result of a delicate
balance between nonlinearity and diffraction.
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Fig. 10. Numerical solutions to eq. (79) showing amplitude profile
for higher-order modes. The initial values for the respective

modes as written on the figure ensure that the solution decays
to zero at infinity.
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Fig. 11. (a) Periodic self-focusing of an initial Gaussian profile during
propagation through a self-focusing medium; (b) mutual attraction
of two such beams in aself-focusing medium. The lower picture in
(b) is an equiphase contour to highlight the mutual attraction.
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numerically performed by employing a split-step-type angular plane wave

spectrum method where diffraction is accounted for in the spatial frequency

domain (recall our connent of eq. (71) for 03 " 0 before) while the

nonlinear effect is incorporated in the space domain [24]. The interaction of

two beams adjacent to each other is shown in fig. lb, which shows mutual

"attraction" under the effect of nonlinearity.

5. Optical Bistability

Optical bistability refers to the existence of two stable states of an

optical system for a given set of input conditions. It is interesting

physically because it represents a new kind of nonlinear system in optics.

Such an effect is also of obvious practical interest, as it offers a means

of realizing all-optical switching for optical computers (251.

The typical characteristics of an optically bistable system are

illustrated in fig. 12. A gradual increase in input power produces a steady

increase in the output power or intensity until reaching a critical value

where the output jumps up. On decreasing the input, the output does not

immediately fall sharply but remains on the upper branch of the curve until

the input is reduced to a lower critical value, at which the output jumps

down again. In the region between these two critical points, there are two

stable states for a given incident power. In addition to being hysteretic,

the system also shows switching transitions, usually at both edges of the

bistable region. Also, the state the bistable device actually assumes

depends on the direction in which it traverses the hysteretic curve, i.e. it

has a memory.

In general, the requirements of these bistable charcteristics requires

a nonlinear input/output relationship and a positive feedback. In what

follows, we will first set forward an example of a hybrid bistable system

e.g., an acoustooptic bistable device to point out the requirements for
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Fig. 12. Typical characteristics of an optically bistable system.
As shown in the sequence of pictures, the width of the
bistable region may be changed by varying the feedback
parameter.
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bistability mentioned above. This will be followed by examples of a

nonlinear Fabri-Perot cavity and a linear nondispersive/nonlinear

(dispersive) interface-type arrangement, both of which exhibit optical

bistability. An excellent reference on optical bistability is the book by

Gibbs [26].

5.1 Acoustooptic Bistability

If the diffracted light from an acoustooptic device operating in the

Bragg regime is detected, amplified and fed back to the transducer driving

the acoustooptic cell, a bistable device results. Fig 13 shows the

experimental arrangement [27]. An acoustooptic cell is driven with a 40 Mhz

generator which creates the acoustic grating. The first-order diffracted

light from a He-Ne laser is detected and fed back to the transducer in phase

with the external acoustic "input". If we denote the incident light field

by Vinc' the undiffracted and diffracted light fields by W0 and V1

respectively, then the "output" vI is given by

1 " #inc sin (&/2), (80)

where & is the peak phase delay encountered by the light in the interaction

region and is proportional to the amplitude S of the sound field. Note that

WO " Winc cos (&/2), to maintain conservation of energy. Note that the

assumption made in deriving (8)) is that the sound pressure (o ) remains

constant during the interaction.

If, now, the first order diffracted light intensity is detected by a

photodetector and the resulting electrical signal amplified (by passing it

through an amplifier with a gain constant 5) and fed back to the transducer
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Fig. 13. (a) Acoustooptic bistable device operating in the Bragg regime;
(b) hybrid bistable device
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in unison with external bias ( ), we have a system with a nonlinear input

(a) - output (4'i) relationship, and having a positive feedback. The

effective 6 scattering the light in the acoustooptic cell may be written as

6 0 + p 11 2 '  (81)

where denotes the product of the gain constant 3 of the amplifier and the

conversion efficiency of the photodetector.

Note that under the feedback action, a can no longer, in generality, be

treated as a constant. In fact & can be treated as constant during

interaction iff the interaction time, given as the ratio of the laser beam

width (= 1 mm) and the bulk speed of sound in the cell (= 2000 m/s), is much

smaller compared to the delays incorportated by the finite response time of

the photodetector, the r.f. sound cell driver and the feedback amplifier, or

any other delay line that may be purposely installed (e.g., an optical fiber

or coaxial cable) in the feedback path. We will consider this case only.

Based on the discussion above, we conclude that corresponding to a

fixed input (- &o), the output yl(or 11V112 - W42, if we assume AI to be real)

will undergo a series of iterations at every instant & is updated through

the feedback action. The value of y 2 after n iterations may be written,

using (80) and (81), as [28]

2 2 22

2l(n+l) - 2inc sin ((& + V(n))/21. (82)

The analysis of (82) involves a knowledge of the theory of autonomous

dynamical systems of which only rather recent analysis has been performed

for quadratic maps of the type
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x JJX n(1-xn), (83)

and is out of the scope of our discussion. Suffice to state that the

behavior of (83) is dynamically 3imple for 0 < g : 3 but chaotic when L > 4

[28], [29]. In fact, the map undergoes a series of period-doubling

bifurcations en route to chaos as the value of g increases.

In what follows, we will discuss the steady-state behavior of (82) (n -4

) for different values of & 0 Rather than go through an extensive stability

analysis of the steady state, we will draw the analogy between the operation

of the bistable device with an electronic Schmitt trigger (30] which also exhibits

hysteretic properties, and give an equivalent circuit representation. First,

note from (82) that the steady state relationship reads

2 2 2 - 2
SWinc + 1i)/2] (84)

and is plotted in fig. 14 for different values of 1. Note that = 2.2 is

the lowest admissible value of the feedback parameter to observe any

hysteresis. With increase in 1, the area under the hysteresis curve

increases, and, more noticeably, the lower threshold moves to the left. This

makes sense since, upon differentiating (84) w.r.t. &0' we get

2 - M 2*
dv /da0  ( ncCl -(0n )(sin &)]; (85)

2 -
hence d1 1/da will become infinite when

(0/2) sin &- 1, (86)
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Fig. 14. Sketch of the Steady-state relationship for the hybrid
acoustooptic bistable device. Transitions are marked by
dotted lines and path abcd completes the hysteresis cycle.
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which implies 5 > 2 for the onset of hysteresis.

In passing, we remark that in a practical Bragg operation, some amount

of light is also diffracted into higher orders, noticeably the second order.

Issues such as improvemant of performance by reducing the second-order

diffraction or the effect of a second-order feedback are current topics of

interest. We also mention that similar hysteretic behavior may be observed

2
by treating yinc and as the inputs and treating the other variables as

parameters (27].

For our configuration, the equivalent circuit in terms of an electronic

Schmitt trigger is shown in fig. 15 [28). Readers familiar with an OP-AMP

realization of the Schmitt trigger may recognize that the transfer

characteristic of the circuit when the loop gain is greater than 1 has a

shape (see fig. 16) similar to the curves in fig. 14. The part of the

curve with a negative slope is unstable, and there are two stable states.

Transition from one state to the other occurs at the upper and lower

thresholds of the input. The optically bistable device operates in a

similar way; with transitions along the dotted lines in fig. 14.

5.2 The Nonlinear Fabri-Perot Cavity

Consider a CW laser beam injected into an optical cavity which is tuned

or nearly tuned to the incident light. In general, the incident field is

partly transmitted, partly reflected and partly absorbed. When the cavity

contains an absorbing material resonant or nearly resonant with the incident

electric field, the transmitted power becomes a nonlinear function of the

incident power. The behavior of the system is determined by a parameter

which depends on the unsaturated absorption coefficient of the sample per
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Fig. 15. Comparison of the hybrid acoustooptic device with an electronic
Schmitt trigger. The small signal gain with feedback is given
by eq. (85). Unlike the electronic Schmitt trigger, the gain
characteristics of the amplifier do not possess a hard
nonlinearity.
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Fig. 16. Transfer characteristics of an electronic Schmitt trigger using

the model of an ideal OP-AMP. V is the output while V.

represents the input, and should be compared to - in tig. 15.
Comparison with fig. 14 reveals the essential differences:

(a) the curve seems reflected about a vertical line, this is due

to the fact that the inputs are similar upto a negative sign,
and (b) the upper and lower steady states are well-defined, due to

the hard-limiter model of an ideal OP-AMP.

MEO
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unit length, its length and on the mirror transmittance. If one increases

the value of this parameter above a certain threshold, the steady-state

input-output curve becomes S-shaped, indicating bistability and hysteresis.

The threshold value depends on the cavity mistuning, the atomic detuning.

the inhomogeneous linewidth and the type of cavity, to name a few. When the

incident field is in perfect resonance with the atomic line so that

dispersion does not play a role, we have purely absorptive bistability. On

the other hand, if the atomic detuning is so large so that absorption

becomes negligible, we have purely dispersive bistability (31J.

In order to describe theoretically the phenomenon of bistability, we

will consider a unidirectional ring cavity as shown in fig. 17. For

simplicity, we assume that mirrors 3 and 4 have 100% reflectivity. We will

denote the reflection and transmission coefficients of mirrors . and 2 as R

and T respectively.

Now, the dynamics of the "active" cavity between mirrors 1 and 2 may be

modelled in terms of the Maxwell-Bloch equations [26):

aE /at + c aE /az - -gP , (87a)e o e ge'

p e/at - (L/E)E eD jAP e (87b)

aD/at = (4/2) (E e P + E eP) - 71(D-N/2), (87c)

where E and P are the slowly varying envelopes of the electric field ande e

macroscopic polarization, c represents the linear phase velocity, K - h/2x

where h is Planck's constant and is the modulus of the dipole moment of the

atoms. Furthermore, D is one half the difference between the populations of
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Fig. 17. The nonlinear Fabri-Perot modelled by a ring cavity. The
nonlinear meterial is between mirrors I and 2. E., E and

I r
E denote the incident, reflected and transmitted electric
fields as shown.
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the lower and upper level, g is a coupling constant proportional to the

frequency C0o of the incident field, A - (0) a-( o)-jT2 where a is the

transition frequency of the atoms and y1 , Y2 are the inverses of the atomic

relaxation times T1 and T2 respectively.

In what follows, we will analyze the absorptive and dispersive cases

separately. For the first, we will bring out the Steady state relationship

and draw the hysteresis curve to bring out the similarity (and differences)

with the case considered in Section 5.1. For the second, we will get into

a more detailed analysis to bring out the effects of feedback gain and the

onset of instabilities.

A. Absorptive Case

Here 0 a - (o so that jA (see (87b)) = 2 ; E e' Pe may be considered real

without loss of generality to simplify (87c) . The coherent CW field E,ei

enters into the cavity from the left. The cavity imposes the two following

relations between E ei, the transmitted field Eet and the fields Ee (O,t) and

E (L,t) where L is the length of the atomic sample:e

E (t) = T /2E (L,t),et e

E (0,t) T/2 E. + RE (L,t-At). (88)
e 1 e

In (88), At = (2t+L)/c is the time light takes to travel from mirror 2 to0

mirror 1 and

R + T - 1. (89)
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The second equation in (88) is a boundary condition characteristic of the

ring cavity where the second term on the RHS describes a feedback mechanism

so essential for bistability.

Consider the steady state aE /at -aP /at - aD/at - 0. The set ofe e

equations (87) may be readily simplified to yield

dE /dz - (ggN/2NcY2)Ee/[l+E
2/(! YY/ 2 )1. (90)

Eq. (90) shows how the "effective" propagation constant for the electric

field, and hence, the refractive index, depends on the electric field

itself, and thus brings out the physics of the nonlinearity constants viz.

03' X 1 1 11 ' n2 and y introduced in Section 2.

For notational convenience, we introduce the parameter

ac = pLgN/2fCoy 2  
(91)

and a normalized field

1/2
*e = 4E e ( l721 (92)

to recast (90) into

-2
de /dz - - ce /( 1 +e ), (93)

which can be easily integrated and evaluated at z-L. The result is

In(AV, (0)/e (L)) + (1/2) ['e (0) - 'j (L) - a L. (94)

..... . . . e g i a m m m e e e Ic
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Now, we define normalized incident and transmitted amplitudes as

Jei,.t 11Eei'/t1Y(72 T) 1/2 (95)

Then (88) in the steady state transforms to

141 -1.4(L),

et -'e

e() = Tei + Ryt (96)

With (96), eq. (94) may be rewritten as

1n[1+T( i/1t - 1)) + (11/2){[l + T(1i/1t - 1)] -i} = c L.
Yei/Vet +(et Ye i /'et c

(97)

In the so-called double mean-field limit [31]

a L << 1, T << 1 with aL/2T = C = constant, (98)c

(97) has the form

141" -'yt + 2Ct/(1+ -t2 )  (99)

and is plotted in fig. 18. Note that the graph is an S-shaped curve

(similar to the acoustooptic case) which leads to a hysteretic cycle.

We remark that the bistability arises from the combined action of the
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Fig. 18. Purely absorptive bistability S-curve indicating stable and
unstable states and the hysteresis cycle.
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nonlinear input-output relationship of the sample medium (see (94)) and the

feedback of the mirrors. This feedback action is essential since it is easy

to show that a plot of (97) for T - 1 (no reflection) does not possess the

characteristic S-shape any more.

Now, introducing perturbations of the steady-state solution to the

Maxwell-Bloch equations, one can perform a rigorous (although local)

stability analysis for the resulting linearized system. Stability then

requires that the perturbations decay exponentially in time; hence the

eigenvalues of the linearized problem should have nonpositive real parts. A

detailed analysis, which is done in [31], is out of the scope of this

discussion.

B. Dispersive (Kerr) Case

For an analysis of Kerr-type bistability, we return to the Maxwell-

Bloch equations (87) and assume ) a - (o >> y2 . For a simplistic approach

and to decouple the equations in the easiest possible way, we can eliminate

D between (87b) and (87c) at around the steady states for P and D ande

substitute in (87a) to obtain

3 3 2*

a~e/at + coae/az = J(gN/Klj)We - j (g 3y2 N/2 1f3ri1I 3 )We AV' (100)

where we have written 'e for Ee

It can be verified, after some algebra, that if We satisfies (100), then

the total wavefunction W satisfies

#/at2 - Co2 a 2/az2 - AI v+ (20 3 /3)a 2'V3/at 2  (101)
0 1 3
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where

A1 - -gLNk Co /11Ai, (102a)

03 - -4gV3Y 2 N/y 1N
3I 3 koco' (102b)

if we restrict ourselves around an operating frequency 0 . Note (102b) shows0

the physics of the origin of the Kerr-type nonlinearity. Also, an inherent

dispersion appears, as depicted through A1. In fact, the linear dispersion

relation can be obtained by suppressing the nonlinear term and substituting W

- exp j(0)t -kz), and reads (2)

2 22 -
0) 2 c k-A. (103)

2
Eq. (103) resembles a waveguide-like dispersion relation if A1 = -0) , where

o is the (linear) cutoff frequency of the waveguide. We have thus elegantlyc

reduced the complicated Maxwell-Bloch equations to a form similar to (4b)

(which was heuristically derived from a simple physical picture of phase

velocity dependence on amplitudes).

We will use (101) as a model to gain insight into the instabilities

encountered in the Fabri-Perot cavity with feedback, as well as to explain

hysteresis and bistability for the interface problem in the next section.

In what follows, we provide a simple analysis of instantaneous

optical bistability based on the model of the nonlinear medium as described

above by treating it as a degenerate parametric amplifier of any noise

present in the cavity. Depending upon the phase of the noise component, the

net parametric round trip gain may be real and exceed inity magnitude.
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Under such conditions, we expect instabilities.

From a physical point of view, the nonlinear medium acts as a degenerate

traveling wave parametric amplifier for any noise in the system where the

"pump", which acts as frequency 2 olexists virtually through the action of

the cubic nonlinearity on the signal itself (32). In our quest for

instabilities, we investigate if it is possible for a noise component of a

certain phase to exist such that after parametric amplification in the medium

and completion of its round trip through the ring cavity, this component will

return in the nonlinear medium in the same phase as when it started. In

cases where this possible, we would then expect instability if the roundtrip

gain exceeds unity.

An alternate way of writing (100) or (101) is to express iy as a phasor:

- Re {W exp j t}; xp = W (Z), (104)
p o p p

where we have assumed CW propagation. Substituting this in (101) yields

d2Vp/dz2+ (k2 + AI/Co)Vp k /2)W 2* (105)

p0 1 0 14 p 3o p p

if we restrict ourselves around W and denote k - C0 /c . Now, the total

wavefunction V. may be visualized as the sum of a signal and noise at the
p

same frequency and decomposed as

.- W.+ ev (1 €06)
p p1 p2

where e is a small quantity. An order-by-order analysis of (105) after

substitution of (106) gives
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O di2 Vp/dZ2 + (k2+A./c 2 ) 4 (Pk 2 12l o 1 0  -( 3k0 p1 p1,  (107a)

1 2 - 2 2d * *Z d 2 /dz (k2+A /C21)p2 - (P 3 k /2) (p 2 p2+21lZ2

'Vp2 10 0 1 p Pp Iplp2)

(107b)

Assuming an undepleted pump lyp we next write, in (107a),

V W (z) exp (-jkoz) (108)
p1 elo

to determine the modified propagation constant k'
0

k'2 (k 2 + A /c 2) - (3 k /2) 2 (109)
o o 1 o 3 0 1 '4'el

Note that the effective propagation constant is modified from k due to
0

contributions from the dispersion (A1 ) and the nonlinearity (P33) Now to

study the behavior of W p2 (the "noise" component), we set

W. - 'We(z) exp (-jkoZ), (110)
p2 e2o

and substitute in (107b) to obtain

dW e/dz"- j(O k 2/4k ) (el2+le2e ,  (111)22 3 o

where we have used (109) and the "slowly varying" assumption

Id2 ye2/dz 2 1/IdIe2/dzI << k' (112)
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to simplify.

In order to track the amplitude and phase of the "noise" component

separately, we write

'%el a1,

'Ye2 - a2 (z)exp -j 2 (z), (113)

where we have assumed the pump amplitude to be real without loss of

generality. Substituting (113) in (111), we get the pair of coupled

equations

da2/dz = -(A3k2a2 /4koa2 sin 222 (114a)
2 3 ol o 2 22

do /dz -- (P k 2a 2/4kl) (1+cos 202) (114b)2 3 o1 0

upon separating real and imaginary parts. Now (114b) may be readily

integrated to give

02(z) tan - 1(H3k2 a 2/2ko)z], (115)

where we have assumed 02 (0) - 0 for simplicity, and where k' is defined
2 0

through (109) and (113). Substitution of (115) in (113) and integration

yields, after some algebra,

2 2 2 21/2
a2 (z) - a 2 (0) (1+(P3k oa /2k') z 2 (116)

.... . ,,,m ,um m nqm u 0 1nn 0iA i ilI
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With (115) and (116), we can write

Ij(0)I1(1+(az) 2 I/ exp j (tan- I z - kz 17p2  p2

where

k 2
a - P3 o l/2k',o (118)

Eq. (117) shows that the "noise" component is amplified as it travels

through the nonlinear medium of length L. In fact,

AVI(L) - IA. (0) I C1+(ML) 2 1/2 exp -j(k'L-tan- 1 LL), (119)

p2 p2  2 x

so that the "noise" component phasor after one round trip reads

pp2 (2L+2t) p R [i+(dL) 2] 1/2 exp -j(koL+k (L+21)-tan- LL)(120)

where we have taken into account the phase change during propagation through

the path 2341 (see fig. 17) and introduced the effects of reflection by

mirrors 2 and 1.

The conditions for oscillation, or instability, (like in the

acoustooptic case) demand that (a) the total round trip phase change must

be an integral multiple of 2n (positive feedback), and (b) the round trip

(real) gain A must exceed 1. The first condition, in our context, reads

(k'L - tan- 1L) + k (L+21) - 2mx, m integer, (121)
0 0
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while the second condition yields

A - R(I+(ML) 2 /2> 1, (122a)

implying

2 21 + (ML) > (1/R) (122b)

Using (121), the gain condition (122b) may be rephrased as

R > cos[(ko'-ko)L + 2Lo(L+E) - 2ma]. (123)

The second term in the argument of the cosine in (123) denotes the total

phase shift per round trip in the Fabri-Perot in the absence of the nonlinear

sample; while the first term denotes the extra phase shift due to dispersion

(A1) and nonlinearity (A3) in the sample. (121) and (123) should serve as

good "design" equations in the construction of a Kerr-type nonlinear Fabri-

Perot exhibiting bistability. Our simplified analysis is in good agreement

with rigorous theories predicting bistability in such a device (33].

5.3 The Linear/Nonlinear Interface

Consider the semi-infinite linear and nonlinear regions as shown in fig.

19 with a common interface at z - 0. Assume, also, a plane wave incident

from the linear medium to the nonlinear medium at "grazing incidence." Under

the assumptions that the reflected wave is a plane wave and that the

transmitted field is either a propagating plane wave or an evanescent field

..... decreases monotonically with distance from the interface z, but is
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INTERFACE

Fig. 19. Wave diagram of the nonlinear interface and for "grazing"
incidence. The ray traces in the nonlinear medium (below
the interface) represent (a) the traveling plane wave (PW),
(b) the longitudinally inhomogeneous traveling wave (LITW)
and (c) the totally internally reflected wave (TIR). The
nonlinear material is assumed to possess Kerr-type nonlinearity.
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independent of x and y coordinates, the scalar wave equation can be

analytically solved in closed form and satisfies all the relevant boundary

conditions. Solutions can be obtained for both positive and negative values

of 03 The theory predicts hysteresis and bistability for the reflection

coefficient when plotted as a function of the input amplitude, and is drawn

in fig. 20 [34). Later, numerical simulations were done to analyze the reflection

of a Gaussian beam from the interface, also at grazing incidence [35), and some of

the predicted effects were experimentally observed (36].

In what follows, we will consider a simpler model where a plane wave is

normally incident at the interface between a linear nondispersive medium and

a nonlinear dispersive medium (see fig. 21) (37]. Normal incidence makes the

computations simpler, and dispersion is required to ensure bistable

operation. Dispersion may be provided by having a waveguide-type structure

containing the nonlinear medium. We could also think of the nonlinear medium

to be excited at a frequency much different from the transition frequency of

the atoms so that the material appears dispersive to the incoming field (see

section 5.2).

Before proceeding with the analysis, let us remark that the linear

region will be modelled by a linear wave'eqution of the type

a2A/at2 - c 2 a 2 /z2 . 0 (124)0

and the nonlinear dispersion region by an equation similar to (101):

2 /at2 22 /az2 + 22/3) 213/at2 (125)

eav repa o linar AI 02n th nt

We have replaced the linear phase velocity by in the nonlinear medium to
0
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r TIR

S '

Fig. 20. Dependence of the reflectivity r on the incident light intensity
JEn I at different glancing angles in the case of negative
linear mismatch of susceptibilities and n2 greater than zero.
Increasing label numbers refer to decreasing ratios of the
glancing angle to the critical glancing angle, which is
determined from the linear mismatch of the susceptibilities.
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Medium I IMedium II

linear nondispersive nonlinear dispersive

A i  /

A A
A

r
/

z

z=O

Fig. 21. Normal incidence across a linear nondispersive/ nonlinear
dispersive interface.
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bring out the effect(s) of linear phase velocity mismatch. A time-harmonic

incident wave will be assumed, and in the propagation mode, the wave

amplitude in the nonlinear medium will be determined through the amplitude

transmission coefficient

- 2I0 /( o+ ') = 2k'/(ko+kok), (126)

where k , k' refer to the propagation constants in the linear nondispersive
0 0

and nonlinear dispersive regions respectively (38]. Sometimes, there is no

propagation in the nonlinear region; then only evanescent modes can exist.

The wave amplitude, as will be shown below, decays with distance; however,

this decay is not exponential. First hand derivations will be done for this

case. The output is assumed to be the amplitude of the electric field

beyond a certain specific distance into the nonlinear medium. The steady

state input (incident field)-output characteristics will be plotted and

their stability studied to bring out the hysteretic and bistable effects.

Starting, then, from (125), and assuming a phasor form for W as before

(see (103)), we obtain, analogous to (104),

d . dz+k-2 +( 1 /a0 )' "3o iy) ,W 0, k 0 - ow /c 0 (127)
p o p po 0

A particular traveling wave solution of the above has the form

Wp (z) - At exp -jk tz, At constant (128)

with
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k ±(/ 2 ) ~2 2 2 1/2(29kt  Pa -0 c  P- 3 )0/2) 1A t (129)

in (128), (129) the subscript 't' denotes transmission. Also, in (129), A

2
has been replaced by -o2 in accordance with the discussion following

c

eq. (103). The transmission coefficient may now be found, using (126), (129),

and the fact At - AIT where A. is the incident wave amplitude (assumed real)

from the linear nondispersive region, in a trascendental form as

2/[l ±(ko/ko) {l - ((0/0o) 2 _ (3 /2)A 2 2 } 1/2 1 (130)

The presence of nonlinearity changes the cutoff frequency of the

waveguide. To see this, note that for the condition of propagation to be

satisfied the quantity in braced brackets in (130) must be greater than

zero; and may be achieved with P3 < 0 even if the linear cutoff frequency

(0) ) is greater than the operating frequency ((0 ). Under these conditions,C 0

we may say that a strong enough incident wave can "push" through a waveguide

in linear cutoff. Alternatively, and in the case of our interest, there is no

propagation (kt imaginary) for 33 > 0 (n2 < 0) even for Coc < 0O if the

incident field is strong enough such that

2 2 2
P3 A /2 > (1 - (o, /0 ) 2/ . (131)3i c o

In this case it is easy to see that the "effective" cutoff frequency is

increased to a value greater than the operating frequency.

While it is easier to predict the amplitude of a propagating wave in

the nonlinear medium (using (130); :he evanescent solutions in the
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nonpropagating case has to be determined from first principles. Since the

propagating constant is now imaginary, we may write, from (129),

(z j [ 3At(z) 12 2 1/2
kt (z) -o { A-((/0)

-js(z). (132)

Since At decays in the nonlinear dispersive medium, we may write A t(z+Az) =

A (z)exp -5(z)Az, which, in the limit Az -4 0, readst

dA t (z)/dz - -S(z)A t (z)

- k 0[IA (z) 127] 1/2 (z) (133a)

where

5 P3 /2; = l ( o / o)2 (133b)

[It may be formally shown that P, y > 0 to achieve bistability [37); however,

this is out of the scope of this rather elementary discussioni.

To solve for A (z), we first resolve it into its amplitude and phase byt

writing

A (z) -A (z) exp jo(z). (134)
t t

Substitution in (133) and some algebra [37] shows that
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O(z) - 0(0) - constant

At(z) - ( 1/)/2/sin y1/2 oZ + 11 1/2 sin-1 1((/11/2 /t( 1.

(135)

A plot of the solution A t(z) is shown in fig. 22. Note that A t(z) takes on

its maximum value, viz. A t(0), at z=0, and decays (nonexponentially) to a

1/2
critical "threshold" value (y/p) at

z = z = [/2 - sin- (/3) /A /i t (0))]/yl/ . (136)
0 t1

Incidentally, (y/p) 1/2 is the minimum value of A t(z) for nonpropagation. It

can be readily checked that

A4(zt) - (Y/P) exp jo exp jW t (137)

is a solution of (127) for z > z and the kt = 0 for this case. Thus, A t(z)

decays first as in (135) till it reaches the critical value from which point

it remains constant (see fig. 22).

A discussion of boundary conditions at the interface (z=O) for the

nonpropagating case is now in order. This can be done rigorously by

imposing the conditions that the wavefunctions and their spatial derivatives

are continuous across the boundary. Alternatively, this can be done by

realizing that eqns. (126), (130) hold at z-0+ . This gives

A (0) - [[-{-(ko/K ) 2 - f } + [((k/ o ) 2 Y) 2 22 ( k o /  1 2/2 ]/ 1/2

(138)
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Fig. 22. Plot of the field amplitude into the nonlinear dispersive medium
in the nonpropagation mode (see eq. (135)).
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tan 0(0)- C[-{(ko/ 0)+y} + {((ko/0o) + 16A2 -(k 0 021/2 / 1/2

0 0 0

(139)

The reflection coefficient has a magnitude 1, which is not surprising.

Now, assume the output plane to be defined as z=z1 in the nonlinear

medium. Fig. 23 shows the plot of A (z ) vs. A. for a set of suitably
t 11

chosen parameters ,y, kO, ko and zl. It comprises two main parts: the

lower part (I and II) which represents the steady-state solution for the

transmission case, while the upper part (III and IV) represents the solution

for the nonpropagation case. Note that in the nonpropagation mode, At (z1

remains constant with increase in A. the corresponding z (which depends on1 0

A t(0), and hence on A.) is less than z . The figure is an S-shaped

input/output curve which is typically associated with hysteresis and

bistability. A rigorous stability analysis shows that the dotted part

(region II) may correspond to an unstable steady state, resulting in

bistability and hysteresis, as shown in the figure.

6. Phase Conjugation

Optical phase conjugation is a technique that employs the cubic

nonlinearity effect of the optical medium to precisely reverse both the

direction and the overall phase factor in an arbitrary beam of light. The

process may be thought of as reflection of light from a "mirror" with

unusual image-transformation properties. In order to illustrate this point,

note that a conventional mirror ifig. 24a) changes the sign of the k vector

component normal to the mirror surface while leaving the tangential

component unchanged. On the oth, r hand, phase conjugation (fig. 24b) cause
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Al

Fig. 23. Hysteresis curve for transmission across a linear nondispersive/
nonlinear dispersive interface for the case of normal incidence.
The nonlinearity and dispersion parameters and the propagation
constant in the nonlinear medium have exactly the same values as
fig. 22; and the ratio of the (linear) propagation constants of
the linear and nonlinear media is taken as 1/3.
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reflection reflection"

by mirror / //' ',by phase

conjugation

=k~.i 4- -

(a) (b)

Fig. 24. Principle of phase conjugation illustrated through a comparison

between conventional reflection through mirrors and reflection
by phase conjugation.
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an inversion of the entire vector k, so that the incident ray exactly

returns upon itself (39]'. It is not hard to argue that an incident converging

(diverging) beam would be conjugated into a diverging (converging) beam.

Mathematically speaking, this means that if 41p represents the incident

phasor, then iy,* would represent the phase conjugated phasor.
p

6.1 Comparison with Holography

At this time it may be instructive to refresh our memory with the basic

principles of wavefront-reconstruction imaging, or holography, first

proposed by Gabor and experimentally realized by Leith and Upatneiks. The

wavefront-reconstruction process consists of two basic operations:

recording or information storage, and reconstruction [19]. To understand the

first, consider two wavefronts, represented by their respective envelopes

1el,2 = a, 2exp -Jol, 2

to interfere in space (see fig. 25a), resulting in an intensity

I el+ e2

" 1 2+1 2+ W +

- Vel' ~1 e2~ + 14 e1e2 +~el'Ve2

2 2
- a1 + a2 + 2ala2 cos(Ol-#2). (140)

The intensity distribution is then usually recorded on a film and the film

developed to generate a transparency or "hologram" with a transparency

function that is proportional to I. To understand the reconstruction
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Reference

Object

H!olograiri_____ _______

(a) (b)

Fig. 25. Imaging by wavefront reconstruction or holography.
(a) recording, (b) reconstruction. If the wave illuminating
the hologram is proportional to the complex conjugate of the
reference wave, a real image results.
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process, assume that the hologram is now illuminated with a reconstruction

wave Ve3 The field amplitude behind the transparency is then proportional

to

%e3["Vel1 2 +' e2' + 'eP e + ee23

Note that if 'e3 is an exact duplication of one of the original waves, viz.

%e2' which we shall, from now on, call the reference wave, the third term in

the above expression becomes equal to We multiplied by a real term, and

hence is a duplicate of 1el , which we shall call the object wave. However,

if e3 is proportional to We*, observe that the fourth term of the above

expression, which we shall name 'e4' becomes proportional to Xe'* and hence

represents the conjugate of the object wavefront. We may state at this point

that 44 can also be thought of as baing responsible for the formation of a

real image of the original object (see fig. 25b) (19].

From the discussion in the last paragraph, it is clear that one can

achieve phase conjugation using holographic techniques, although in the

conventional sense, the process is slow, and not real-time, owing to the

efforts in making the hologram. Note that in the above discussion we

tacitly talked in terms of envelopes rather than phasors since reversal of

the entire k vector is not usually possible using the geometry shown in fig.

4.25. The process of introducing p,2,3 all at once in a cubically

nonlinear medium to generate AVp4 speeds up the conjugation, and is

technically referred to as the four-wave mixing problem. The entire k

vector of W. p4 is the negative of that of 1pl . This will be discussed at

some length in the following subsection.
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6.2 Semiclassical Analysis

We start from eq. (5) with P2 = 0:

a2 A/t2 _ c 2 = (203/3)a2W3/at 2  (141)
0 3

and take 4( to be the sum of four waves as

= Re E pV(z) + yjp2 (y,z) + xp3 (yz) + EI 4 (z)) exp jcot ]  (142)

where Vp2' .p3 represent the phasors corresponding to the (undepleted)

"pump" waves with Apl' 4p4 representing the "probe" and the "conjugate" wave

phasors respectively. The quantity e is taken to be small to emphasize that

the pump energy is much larger than the probe and conjugate wave energies.

Substitution of (142) into (141) and retaining only contributions around (00

gives the following equation upon equating coefficients of e 0:

k2(P2IV3Vo 2  pV3) 3 0 Ip2+'Ip3) ~p2+' p3 13

where k 0- 0 /c . Now, assuming the pumps to be contrapropagating in the

sense that (see fig. 26)

Wp2 = X11e exp - j(k z+k y)

-p3 = We exp + j(kz+kyy), We constant (144)

and of equal amplitude, the following expression for the "effective"
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(NONDEPLETED PUMP WAVE)

CONJUGATE

(NUNOEPLETED PUMP WAVE):

Fig. 26. Basic geometry of phase conjugation by four-wave mixing.



79

propagation constant k results upon substitution in (143):
0

k 2- (k 2+k 2)/{1-(3p3/2)yyelJ e 1 - (145)
0 y z 3 e

1
Now equating the coefficients of E yields

d 2 ) / d z 2 + k22(W 4

=(P 3 k2/2) [(,p2+W.p3) ( . + 4) + 2I1xp2 +Wp3 12 ,X +p4. (146)

We now write

IVpl = Vel(z)exp - jkoz,

V.p4 - We4 (z)exp + jkoz (147)

in anticipation of a phase conjugated wave Wp4 traveling in the -z direction

due to the probe wave IV (see fig. 26). We also employ the slowly-

varying assumption on We, and Ye4" Furthermore, nr-., that the term (Wp2 +

2 2
Vp3) (=iWVp2 + Wp3I for our case) defines essentially a sinusoidal phase

grating in space due to the cubic nonlinearity. In the direction of

propagation of the probe and the conjugate wave, however, only the term from

the above expression that is spatially constant will affect their evolution.

The spatial distribution of the induced phase grating will have variations

along the directions of propagation of the pumps; however, these will not

affect the probe and conjugate. Mathematically, this amounts to picking out

2the constant term from ('Vp2 + 'Vp3) Eq. (146) thus gives the following set
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of coupled equations between IVei and 4

diel/dz - 2JP3 ko Ve 2 (2%1 + W4) (148a)

d,#,/dz = -2J 23 Koqe1 (yI + 2 N/4) (148b)

To solve the system (148), we introduce

2
Vel - We, exp -4jP 3 kol Vel 2

We4 - We4 exp 4jJP 3 ko e1412 z (149)

to recast the system in the form

de */dz = jea'

d*/dz = -j8141, (150)

where

- 21 3 k 0oI12. (151)

The solution to (150) for initial conditions 1el (0) and Ye4 (L) is

given by [40]
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1el(z) - j(113 sin (Iz)/9 cos(I IL)-e"4* (L)

+ (cos (lT(z-L))/cos(iJiL)]'el(O), (152)

We4 (Z) = [cos(61z)/cos(81L)14 4(L)

-j(181 sin (1Ii(z-L))/9cos(16I K)1 e *(0) . (153)
Wel

In the practical case of phase conjugation, Yel(0) is finite, whereas

%4 (L)= 0. In this case, the nonlinearly reflected wave at the input plane

(z-0) is

( = j[(6/161)tan (191L)]-e*(0), (154)

where 9 is defined in (151). Note that 1e4 is proportional to the complex

conjugate of e'e' as expected.

7. The Nonlinear Schrodinger Equation and Soliton Propagation

It is well known in the theory of nonlinear waves that pulses traveling

in nonlinear medium distort under the effect of nonlinearity [1], [2].

Furthermore, from linear theory, we may also recall that pulses distort and

spread due to dispersion in the medium [4]. It is sometimes possible, in a

nonlinear dispersive environment, to ensure distortionless propagation of

pulses as a result of a balance between the nonlinearity and dispersion. For

baseband propagation, it is a little easier to see why this should happen:

the steepening effect of nonlinearity (see fig. 1) may be balanced by the

spreading, or "smoothening" effect of dispersion. For modulated pulses, both
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nonlinearity and dispersion cause a chirping in frequency to develop during

propagation, as well as other distortions of the envelope. Given the right

amounts of nonlinearity and dispersion, it is possible, onece again, to

offset the effect (s) of one with that of the other to ensure distortionless

propagation of the modulated pulse [2].

In keeping with the nature of the presentation thus far, we will derive

the PDE for the envelope in the nonlinear dispersive medium in the fastest

possible way. Consider, first, a linear medium with arbitrary dispersion,

as shown in fig. 27. Since we are discussing the behavior of modulated

pulses, it is probably best to locate ourselves at a point ((0 0,k ) of the

dispersion curve (the coordinates corresponding to the carrier frequency and

propagation constant) and define "excursions" around that value by a Taylor

series expansion of the form [2], (4], [41]

0)-0) = u (k-k ) + (u'/2) 2 , > 0. (155)
0 0 0 0

In (155), u - aw/akj and u' -a 20/k are called the group velocity
o 0 o

0 0

and group velocity dispersion terms respectively, and can be explicitly

calculated from a knowledge of the explicit equation describing the

dispersion curve in fig. 27. Changing to variables

Q = 0) - 0 , K = k - k (156)0 0

we can reformulate the nature of the dispersion around the carrrier

frequency 00 as

2u K + (u'/2)K (157)- 0 017
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-k

Fig. 27. Arbitrary dispersion curve showing the variation of the angular
frequency w with the propagatie-n constant k
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How do we figure out the PDE describing envelope propagation ? The

procedure to be followed is the inverse of what we did to calculate the

dispersion relation (103) from the linear part of (101). Note in that case,

we substituted AV - exp j((Ot-kz) in the linear PDE, which, in reality,

amounted to replacing a/at by jw and a/az by -jk, where w and k were the

respective frequency and propagation constant parameters. In this case, we

do exactly the inverse: we replace Q by -ja/at and K by ja/az. The

wavefunction these operators must operate on is, however, the envelope W e of

W; since we are located around the carrier frequency on the dispersion curve.

With all this, (157) yields the linear PDE [2]

2 2
j(ae /at + u ae /az) - (u'/2) a 'e/z = 0, (157a)

e o e 0 Ye/

or

jale/at' - (u;/2) a24 e/az' 2 = 0 (157b)

if we are in a traveling frame of reference

z' - z-u t; t' = t. (158)

In what follows, we will modify (157) by heuristically incorporating

the effects of nonlinearity. Assuming a cubic nonlinearity (03 * 0; 2 - 0)

and W - Re {4e (z,t) exp j((o t -k z)} in (3b), and using the "slowly-

varying envelope" approximation, it follows that V/e evolves according to

ja e/at' + (wo 3/4)y 2iWe*- 0 (159)
e + ( Ouu3 ee
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in a suitable traveling frame of reference. In our heuristic approach, we

will include the effects of nonlinearity in (157) by simply replacing the

2 *
jaye/at' in (157b) by j3We/at' + (o)3 /4 eWe. This yields

jaIe/at' - (u'/2) 2 e/AZ' 2o+ ( o3 /4) 2  (160)

which is the nonlinear Schrodinger (NLS) equation describing envelope

propagation in a (cubically) nonlinear, dispersive medium [2), (4), [17),

[20], [41]. The equation has been extensively used to model waves in plasma

[42), water waves [43), electron and ion cyclotron waves [44) and, with minor

changes of the independent variables, pulse propagation through a single mode

nonlinear optical fiber [4]. we remark that the nonlinearities in fibers

may be Kerr-type, while the dispersion is essentially material dispersion,

since no modal dispersion effects exist.

To find particular solutions of the NLS equation, note that it has the

same form as eq (71) that describes beam propagation through a cubically

nonlinear medium. In fact, an interesting analogy of pulse propagation in

one dimension and beam propagation may be made by comparing eqns. (160) and

(71); in fact, diffraction may be looked upon as being somewhat like

dispersion in space. The (real) amplitude of a particular solution is

therefore of the same form as (75) and a plot appears in fig. 9, with

renamed coordinates. Let us conclude by saying that solitons, as these

envelope profiles are called, have been genrerated and propagated over long-

distances through optical fibers [21), leaving open the door for innovative

communication systems that can be much faster than the present ones that

suffer the effects of material dispersion. The advantages of solitons are
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that they not only remain undistorted by themselves in a nonlinear

dispersive medium, but can also interact with each other without a change in

shape [20).

8. Conclusion

This report reflects some of the work done or being done in the area of

nonlinear optics. As stated in the Introduction, it is by no means complete

or exhaustive, nevertheless, i hope it will get readers started in the

seemingly complex though very interesting area. Since only principles have

been discussed and in fair generality, the discussion could find some use in

other fields, e.g., hydrodynamics and plasmas, where similar effects may be

obsered or, or least, simulated. References are, by no means exhaustive,

rather, they have been kept at a minimum; however, interested readers can

cross-reference from the cited work. It would be true to say that being a

starter in the area, I could appreciate the difficulties one could incur,

and the discussion presented above is just a summary of my lines of thought.
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